Parabolic Lie Algebras are Zero Product Determined

Daniel Brice with Huajun Huang

Definitions

Literature Review

Our Main Results

Parabolic Lie Algebras are Zero Product Determined

Daniel Brice with Huajun Huang

Department of Mathematics Tuskegee University, Alabama dbrice@tuskegee.edu

27 March 2015

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Definitions

Parabolic Lie Algebras are Zero Product Determined

Daniel Brice with Huajun Huang

Definitions

Literature Review

Our Main Results

Let (A,\ast) be an algebra over alg-closed, char-0 K.

Definition (preserve zero products)

A bilinear map $\varphi: A \times A \to X$ is said to preserve zero products if

$$\varphi(x,y) = 0$$
 whenever $x * y = 0$.

Definition (zero product determined)

A is said to be zero product determined if to each bilinear map $\varphi: A \times A \to X$ that preserves zero products there is a linear map $f: A^2 \to X$ such that

$$\varphi(x,y) = f(x*y).$$

Literature Review

Parabolic Lie Algebras are Zero Product Determined

Daniel Brice with Huajun Huang

Definitions

Literature Review

Our Main Results

- Matej Brešar, Mateja Grašič, and Juana Sánchez Ortega. "Zero product determined matrix algebras". In: *Linear Algebra and Its Applications* 430.5 (2009), pp. 1486–1498
- 2 Mateja Grašič. "Zero product determined classical Lie algebras". In: Linear and Multilinear Algebra 58.8 (2010), pp. 1007–1022
- 3 Dengyin Wang, Xiaoxiang Yu, and Zhengxin Chen. "A class of zero product determined Lie algebras". In: *Journal of Algebra* 331.1 (2011), pp. 145–151

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Our Program

Parabolic Lie Algebras are Zero Product Determined

Daniel Brice with Huajun Huang

Definitions

Literature Review

Our Mair Results

Theorem (Wang, Yu, and Chen 2011)

Let q be a parabolic subalgebra of a simple Lie algebra g over K. q is zero product determined.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Can we extend this result:

- to semisimple g?
- to reductive g?
- to other constructions on q?

Our Main Results

Parabolic Lie Algebras are Zero Product Determined

Daniel Brice with Huajun Huang

Definitions

Literature Review

Our Main Results

Proposition

Let \mathfrak{q} be a parabolic subalgebra of a reductive Lie algebra \mathfrak{g} over K.

- **1** q is zero product determined.
- **2** Der q *is zero product determined.*

Proposition

Let L(n,k) be the Lie algebra of consisting of all $(m+n)\times(m+n)$ matrices of the form

$$\begin{array}{ccc} m & n \\ m & \left(\begin{array}{ccc} * & * \\ 0 & 0 \end{array} \right) \end{array}$$

with entries in K. L(n,k) is zero product determined.

Previous Work

Parabolic Lie Algebras are Zero Product Determined

Daniel Brice with Huajun Huang

Definitions

Literature Review

Our Main Results

Theorem (B and Huang 2015)

Let (A, *) be an algebra.

1 A is ZPD iff Ker * is generated by rank-one tensors in $A \otimes A$.

- 2 Abelian Lie algebras are ZPD.
- **3** A direct sum is ZPD iff each summand is ZPD.

Theorem (B and Huang manuscript pending submission)

Let q be a parabolic subalgebra of a reductive Lie algebra \mathfrak{g} over K or \mathbb{R}

- **1** q decomposes as $q = g_Z \dot{+} c \dot{+} [q, q]$
- **2** $\mathfrak{L} = \{ \text{deriv. } D | D(\mathfrak{q}) \subseteq \mathfrak{g}_Z, D([\mathfrak{q}, \mathfrak{q}]) = 0 \}$ is an ideal of $\text{Der } \mathfrak{q}$.
- **3** Der $\mathfrak{q} \cong \mathfrak{L} \oplus \mathrm{ad} \mathfrak{q}$.

Proof of Main Results

Parabolic Lie Algebras are Zero Product Determined

Daniel Brice with Huajun Huang

Definitions

Literature Review

Our Main Results ∎ q is ZPD

Write $\mathfrak{q} = \mathfrak{g}_Z \oplus \mathfrak{q}_S$.

 \mathfrak{q}_S is ZPD by Wang, Yu, and Chen 2011 and direct sums.

 \mathfrak{g}_Z is ZPD since it is abelian.

q is ZPD by direct sums.

Der q is ZPD

Der $\mathfrak{q} \cong \mathfrak{L} \oplus \mathrm{ad} \mathfrak{q}$.

 $\operatorname{ad} \mathfrak{q}$ is ZPD by Wang, Yu, and Chen 2011 and direct sums.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 $\mathfrak{L} \cong L(n,k)$, ZPD by the next proposition.

 $Der \mathfrak{q}$ is ZPD by direct sums.

Proof of Main Results

Parabolic Lie Algebras are Zero Product Determined

Daniel Brice with Huajun Huang

Definitions

Literature Review

Our Main Results • L(n,k) is ZPD

Dimension-counting shows

 $\dim \mathrm{Ker} \, * = n^4 + 2n^3k + n^2 + n^2k^2 - n^2 - nk + 1$

•
$$n^4 - n^2 + 1$$
 from upper-right block, since it is ZPD
• n^2k^2 from upper-left block, since it is abelian

• $2n^3k - 2n^2k$ of the form

 $e_{i,j} \otimes e_{l,n+q}, \quad e_{l,n+q} \otimes e_{i,j} \quad : \quad i,j,k \le n, \quad q \le k, \quad j \ne l$

• $2n^2k - 2nk$ of the form

$$(e_{i,j}-e_{i,j+1})\otimes(e_{j,n+q}+e_{j+1,n+q}),$$

$$(e_{j,n+q}+e_{j+1,n+q})\otimes(e_{i,j}-e_{i,j+1})\quad:\quad i\leq n,\quad j\leq n-1,\quad q\leq k$$
 $\blacksquare \ nk$ of the form

$$(e_{i,i} + e_{i,n+q}) \otimes (e_{i,i} + e_{i,n+q}) \quad : \quad i \leq n, \quad q \leq k$$